D11-Mediated Inhibition of Protein Kinase CK2 Impairs HIF-1α-Mediated Signaling in Human Glioblastoma Cells
نویسندگان
چکیده
Compelling evidence indicates that protein kinase CK2 plays an important role in many steps of cancer initiation and progression, therefore, the development of effective and cell-permeable inhibitors targeting this kinase has become an important objective for the treatment of a variety of cancer types including glioblastoma. We have recently identified 1,3-dichloro-6-[(E)-((4-methoxyphenyl)imino)methyl]dibenzo(b,d)furan-2,7-diol (D11) as a potent and selective inhibitor of protein kinase CK2. In this study, we have further characterized this compound and demonstrated that it suppresses CK2 kinase activity by mixed type inhibition (KI 7.7 nM, KI' 42 nM). Incubation of glioblastoma cells with D11 induces cell death and upon hypoxia the compound leads to HIF-1α destabilization. The analysis of differential mRNA expression related to human hypoxia signaling pathway revealed that D11-mediated inhibition of CK2 caused strong down-regulation of genes associated with the hypoxia response including ANGPTL4, CA9, IGFBP3, MMP9, SLC2A1 and VEGFA. Taken together, the results reported here support the notion that including D11 in future treatment regimens might turn out to be a promising strategy to target tumor hypoxia to overcome resistance to radio- and chemotherapy.
منابع مشابه
HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells
Hypoxia-inducible factor 1α (HIF-1α) expression is a hallmark of intratumoral hypoxia that is associated with breast cancer metastasis and patient mortality. Previously, we demonstrated that HIF-1 stimulates the expression and activity of TAZ, which is a transcriptional effector of the Hippo signaling pathway, by increasing TAZ synthesis and nuclear localization. Here, we report that direct pro...
متن کاملDiacylglycerol Kinase a Is a Critical Signaling Node and Novel Therapeutic Target in Glioblastoma and Other Cancers
Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cell...
متن کاملThe Role of Protein Kinase B Signaling Pathway in Anti-cancer Effect of Rolipram on Glioblastoma Multiforme: An In Vitro Study
Introduction: The mechanism of putative cytotoxicity of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone (rolipram), a specific phosphodiesterase-4 (PDE4) inhibitor, on glioblastoma multiforme (GBM) is almost unknown. This study aimed to investigate the role of protein kinase B (Akt) pathway in the cytotoxic effect of rolipram on human GBM U87 MG cell line and tumor-initiating cells (TICs) ...
متن کاملHypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1α functional interplay.
The molecular mechanisms by which glioblastoma multiforme (GBM) refracts and becomes resistant to radiotherapy treatment remains largely unknown. This radioresistance is partly due to the presence of hypoxic regions, which are frequently found in GBM tumors. We investigated the radiosensitizing effects of MEK/ERK inhibition on GBM cell lines under hypoxic conditions. Four human GBM cell lines, ...
متن کاملDownregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells
Glioblastoma multiforme is the most common primary brain tumor and one of the most aggressive types of cancer in adults. Survival signaling and apoptosis resistance are hallmarks of malignant glioma cells. However, recent studies have shown that other types of cell death such as autophagy can be induced in malignant glioma cells. This suggests tha...
متن کامل